National Research Council of Italy

Institute of Biosciences and BioResources

DISBA logo CNR logo
IBBR publication #1724

Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill

Budde KB, González-Martínez SC, Navascués M, Burgarella C, Mosca E, Lorenzo Z, Zabal-Aguirre M, Vendramin GG, Verdú M, Pausas JG, Heuertz M

Annals of Botany 119 (6): 1061-1072. (2017)
doi: 10.1093/aob/mcw286

Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, result- ing in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and re- duce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a re- gion exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably re- flected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history trait

Actions
Select by Year
Select by Type
Select by Author
*
*
*
*
Istituto di Bioscienze e Biorisorse (IBBR/CNR)
Via G. Amendola 165/A, I-70126 Bari (Italy)
Copyright © 2012-2024. All Rights Reserved.